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We began a discussion of coupled oscillators by considering two masses on a friction-less 
surface, with 3 springs between them, all in a line.  The left mass (𝑚1) is connected to the left 
wall by a spring of spring constant 𝑘1, while the other mass (𝑚2) is connected to the right 
wall by a spring of spring constant 𝑘3.  The two masses are also directly connected to each 
other by a third spring characterized by 𝑘2.  In the absence of spring 2, the two masses would 
oscillate independently at their own natural frequencies.  However, with the coupling, they 
will have a new type of motion characterized by ‘normal modes.’ 

We wrote down the Lagrangian of the system and found that Lagrange’s equations yield 
a pair of coupled second-order linear differential equations: −(𝑘1 + 𝑘2)𝑥1 + 𝑘2𝑥2 = 𝑚1�̈�1, 
and 𝑘2𝑥1−(𝑘2 + 𝑘3)𝑥2 = 𝑚2�̈�2.  These equations can be summarized in an elegant 2x2 

matrix equation: 𝑀��̈⃗� = −𝐾��⃗�, where �⃗� = �
𝑥1
𝑥2� is the vector of unknowns, 𝑀� = �𝑚1 0

0 𝑚2
� is 

the “mass matrix”, and 𝐾� = �𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2 + 𝑘3

� is the “spring constant matrix”.  This 

equation is a generalization of the mass on a spring equation.  In fact it reduces to two un-
coupled mass/spring equations when 𝑘2 = 0. 

Although the two un-coupled masses would oscillate on their own at different 
frequencies, we are going to try an ansatz in which both masses oscillate together at a single 
frequency.  We use the complex form, which worked so well for the single harmonic 

oscillator, but now generalized to 2 oscillators: �⃗�(𝑡) = 𝑅𝑅�𝐶𝑅𝑖𝑖𝑖�, where 𝐶 = �𝐶1𝐶2
�, and 𝐶1 

and 𝐶2 are complex constants.  Putting this into the matrix equation yields �𝐾� − 𝜔2𝑀��𝐶 =
0.  This is similar to, but not exactly, an eigenvalue problem (the two different values of mass 
prevents it from being an eigenvalue problem).  Nevertheless, we can still use the formalism 
of linear algebra to solve this problem.  To get a non-trivial solution for 𝐶, we demand that 
𝑑𝑅𝑡�𝐾� − 𝜔2𝑀�� = 0.  This yields a quadratic equation for 𝜔2, with two solutions. 

We then specialized to the case of equal masses (𝑚) and equal spring constants (𝑘).  The 
quadratic equation then yields two normal mode frequencies: 𝜔1 = �𝑘/𝑚, and 𝜔2 =
�3𝑘/𝑚.  The corresponding normal modes were found to be 𝑥1 = 𝑥2 = 𝐴 cos(𝜔1𝑡 − 𝛿1) for 
𝜔1 (this is the ‘sloshing mode’) and 𝑥1 = −𝑥2 = 𝐴 cos(𝜔2𝑡 − 𝛿2) for 𝜔2 (this is the ‘beating 
mode’).  The general solution is a linear combination of these two normal modes with 
arbitrary weighting constants and phases. 
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The choice of two new coordinates, so-called normal coordinates, would have 
diagonalized the 𝐾� matrix from the get-go.  In this case the normal coordinates are 𝜉1 =
1
2

(𝑥1 + 𝑥2), and 𝜉2 = 1
2

(𝑥1 − 𝑥2).  Each obeys an un-coupled equation of motion and the two 

‘oscillators’ have normal mode frequencies of 𝜔1 = �𝑘/𝑚, and 𝜔2 = �3𝑘/𝑚.  More 
generally, a transformation of coordinates that simultaneously diagonalizes the mass and 
spring constant matrices will reveal the normal coordinates. 

We then considered another coupled oscillator problem – the double pendulum.  We 
wrote down the Lagrangian, which turned out to be quite complicated.  It leads to nonlinear 
equations of motion – as is well known for the single pendulum.  To avoid this problem 
(which we will deal with later in the discussion of nonlinear dynamics), we made a “small 
oscillations” approximation for the double pendulum.  In this approximation we take 𝜙1, 𝜙2, 
�̇�1, and �̇�2 to be small, and only keep terms up to second order in these quantities.   We then 
did a Taylor series expansion for the kinetic energy and potential energy to arrive at an 

approximate Lagrangian of the form: ℒ = 1
2

(𝑚1 + 𝑚2)�𝐿1�̇�1�
2

+ 𝑚2𝐿1𝐿2�̇�1�̇�2 +
1
2
𝑚2�𝐿2�̇�2�

2
− (𝑚1+𝑚2)𝑔𝐿1𝜙12

2
− 𝑚2𝑔𝐿2𝜙22

2
.  Note that both the kinetic energy and the potential 

energy are homogeneous quadratic functions. 

We then used Lagrange’s equations to find the equations of motion for the two 
generalized coordinates 𝜙1, 𝜙2, with the following results:  

𝜙1-equation: −(𝑚1 + 𝑚2)𝑔𝐿1𝜙1 = (𝑚1 + 𝑚2)𝐿12�̈�1 + 𝑚2𝐿1𝐿2�̈�2 

𝜙2-equation: −𝑚2𝑔𝐿2𝜙2 = 𝑚2𝐿1𝐿2�̈�1 + 𝑚2𝐿22�̈�2 

These two equations can be summarized in matrix form as 𝑀�𝜙�⃗ ̈ = −𝐾�𝜙�⃗ , with 𝜙�⃗ = �𝜙1𝜙2
�, 

𝑀� = �
(𝑚1 + 𝑚2)𝐿12 𝑚2𝐿1𝐿2
𝑚2𝐿1𝐿2 𝑚2𝐿22

� and 𝐾� = �
(𝑚1 + 𝑚2)𝑔𝐿1 0

0 𝑚2𝑔𝐿2
�.  The “mass matrix” is 

now made up of rotational inertia terms, while the “spring constant matrix” is made up of 
restoring torque terms.  Note that the K-matrix is diagonal, whereas the M-matrix is not – this 
is the opposite of the situation for the 2-mass-3-spring problem, showing that we have a 
different kind of coupling here.  We again use the complex ansatz for the solution vector: 

𝜙�⃗ (𝑡) = 𝑅𝑅�𝐶𝑅𝑖𝑖𝑖�, where 𝐶 = �𝐶1𝐶2
�, and 𝐶1 and 𝐶2 are complex constants.  Putting this into 

the matrix equation yields �𝐾� − 𝜔2𝑀��𝐶 = 0.  To get a non-trivial solution for 𝐶, we demand 
that 𝑑𝑅𝑡�𝐾� − 𝜔2𝑀�� = 0.  This yields a quadratic equation for 𝜔2, with two solutions. 

We then considered the special case of a double pendulum with equal masses (𝑚) and 
equal lengths (𝐿), and introduce the natural frequency (𝜔0

2 ≡ 𝑔/𝐿).  The determinant yields 



3 
 

two normal mode frequency solutions: 𝜔1 = 𝜔0�2 − √2, and 𝜔2 = 𝜔0�2 + √2.  The 
corresponding normal modes are the analogs of the “sloshing” and “beating” modes.  The 

first is of the form 𝜙�⃗ = 𝐴1 �
1
√2� cos(𝜔1𝑡 − 𝛿1), while the second is 

𝜙�⃗ = 𝐴2 �
1

−√2� cos(𝜔2𝑡 − 𝛿2).  In the first normal mode the two pendula swing together in 

phase (the sloshing mode), with the lower pendulum swinging with greater amplitude.  In the 
other mode the two pendula swing 180o out of phase (a type of beating mode). 


